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We review the status of inclusive electron-proton scatter-
ing F5 structure function data in both the nucleon resonance
region and the deep inelastic region, at momentum transfers
below 5 (GeV/c)?. From these data we construct moments of
F,, down to momentum transfers of Q* ~ 0.1 (GeV/c)?. The
second moment is only slowly varying with Q% down to Q% ~
1, which is a reflection of duality. Below Q2 of 1 (GeV/c)?,
the Q? dependence of the moments is predominantly governed
by the elastic contribution, whereas the inelastic channels still
seem governed by local duality.

I. INTRODUCTION

Three decades ago, Bloom and Gilman observed a fas-
cinating correspondence between the resonance electro-
production and deep inelastic kinematic regimes of inclu-
sive electron-nucleon scattering [1,2]. Specifically, it was
observed that the resonance strength could be related to
the deep inelastic strength via a scaling variable which al-
lowed the comparison of the lower missing mass squared,
W2, and lower four-momentum squared, Q2, resonance
region data to the higher W2 and Q? deep inelastic data.
It was observed that the deep inelastic data are appar-
ently equivalent to an average of the resonance region
data. Further, this behavior was observed over a range
in Q% and W2, and it was found that, with changing
Q?, the resonances move along, but always average to,
the smooth scaling curve typically associated with deep
inelastic scattering. This behavior clearly hinted at a
common origin for resonance (hadron) electroproduction
and deep inelastic (partonic) scattering, termed parton-
hadron, or Bloom-Gilman, duality.

A global kind of parton-hadron duality is well estab-
lished: low-energy resonance production can be shown to
be related to the high-energy behavior of hadron-hadron
scattering [3]; the familiar ratio of ete~ — hadrons over
ete~ — muons uses duality to relate the hadron produc-
tion to the sum of the squared charges of the quarks: here
duality is guarantueed by unitarity (in this, one could ar-
gue that the p production channel exhibits local duality,
in that it’s area averages to about the same global value)
[4]; in Perturbative QCD (PQCD) the high-momentum
transfer behavior of nucleon resonances can be related to
the high-energy transfer behavior of deep inelastic scat-

tering [4,5]. However, it is not clear why duality should
also work in a localized region, and even at relatively low
momentum transfers.

Inclusive deep inelastic scattering on nucleons is a
firmly-established tool for the investigation of the quark-
parton model. At large enough values of invariant mass
squared W2 (= M? + Q%*(1/z - 1), with M the pro-
ton mass and x the Bjorken scaling variable) and four-
momentum transfer squared @2, QCD provides a rigor-
ous description of the physics that generates the Q2 be-
havior of the nucleon structure function Fy = vWy. The
well-known logarithmic scaling violations in the Fj struc-
ture function of the nucleon, predicted by asymptotic
freedom, played a crucial role in establishing QCD as
the accepted theory of strong interactions [6,7). Such be-
havior becomes especially transparent in comparing high
Q? (> 10 (GeV/c)?) Cornwall-Norton or Nachtmann mo-
ments [8] of F; structure functions with the logarithmic
formulae of asymptotic freedom [5,9].

An analysis of the resonance region at smaller W2 and
Q? in terms of QCD was first presented in Refs. [10,11],
where Bloom and Gilman’s duality was re-interpreted,
and the integrals of the average scaling curves were
equated to the n =2 moment of the F; structure function.
The Q? dependence of these moments can be described
by ordering the contributing matrix elements according
to their twist (= dimension - spin) in powers of 1/Q?2. It
was concluded [10] that the fall of the resonances along a
smooth scaling curve with increasing Q% was attributed
[10] to the fact that there exist only small changes in
these lower moments of the F5 structure function due to
higher twist effects. These higher twist effects can be re-
garded as interactions between the quark struck in the
electron-nucleon scattering process and the other quarks
in the nucleon. Such effects are inversely proportional to
Q?, and can therefore be large at small Q2. If they are
not, averages of the Fy structure function over a sufficient
range in z at moderate and high Q2 are approximately
the same. Notwithstanding, the dynamical origin of local
duality, and thus the reason why the higher-twist contri-
butions, undoubtedly required to construct the coherent
nucleon resonances, tend to largely cancel on average,
even at momentum transfers below 5 (GeV/c)?, is still
not understood [9,12].

Recently, it was surprisingly found that the resonance
region seems to average around a global scaling curve
down to very low values of the four-momentum transfer
squared, Q% ~ 0.2 (GeV/c)2. This global scaling curve



mimics a behavior as could be expected if one solely deals
with valence-like quarks [13]. Due to the large increase
in high-precision electron-proton scattering data over the
last twenty years, we revisit the Fy structure function
moment analysis, with the aim to shed light on why local
duality works at far smaller Q2 than anticipated, and
why the nucleon resonance spectra tend to average to a
scaling curve mimicking a valence-like quark distribution.
For this, we present here a moment analysis in a Q? range
of 0.1 -5 (GeV/c)2.

II. LOCAL DUALITY AT LOW MOMENTUM
TRANSFER

First, we show in Fig. 1 an overview of recent high-
precision proton resonance Fy data at low Q? (14]. We
also include data from SLAC at Q? < 0.3 (GeV/c)? [15].
For the former, the systematic uncertainty is estimated
to be 3.5% [14]. For the latter, due to uncertainties in
absolute normalization and radiative corrections, we es-
timate the systematic uncertainty to be better than 10%.
The solid curves represent, for the different kinematics,
the single scaling curve defined by averaging all nucleon
resonance Fy data, regardless of Q2, W2, as a function

of Nachtmann £ (= 2z/(1 ++/1 + 4M222/Q?) [8]). We

have constrained the scaling curve, relevant for the large
£ region, to a model of higher Q? SLAC data [16]. The
resulting parameterization of this scaling curve is [14]

Fy = £°870(1 — £)%906 [0.005 — 0.058(1 — &) —
0.017(1 — £)% + 2.469(1 — €)® —0.240(1 — £)*] . (1)

As one can see from Fig. 1, the individual spectra, at
various @2, oscillate around this single-curve parameter-
ization. We emphasize that this is not by construction,
as the parameterization, at any given value of £, is ob-
tained from a range of nucleon resonance data at variant
values of Q% and W? (e.g., the second resonance bump
could have always been below the scaling curve, while the
first above, etc.). Apparently, nature forces the oscilla-
tory behavior of the various resonance bumps around this
scaling curve, which, at £ > 0.3, corresponding to Q*>1
(GeV/c)? in the nucleon resonance region, closely resem-
bles the Fy deep inelastic scattering behavior [14], and
for £ < 0.3, corresponding to Q% < 0.5 (GeV/c) in the
nucleon resonance region, mimics [13] zF3 data obtained
from averaging neutrino and antineutrino deep inelastic
scattering data [17]. The latter, to leading order in QCD,
selects the difference of quark and antiquark distribution
functions, is predominantly sensitive to a valence quark
only distribution.

Increasing from Q2 = 0.07 (GeV/c)? (Fig. 1a) to Q* =
3 (GeV/c)? (Figs. 1h,li) the F; spectra change shape
drastically. The low Q? spectrum shows a predominant
N — A transition (we do not show the elastic peak, huge

at this Q2), and relatively minor strength at larger en-
ergy transfers. This is not surprising, at these relatively
small energy and four-momentum transfers one would ex-
pect to predominantly excite the valence quarks. At Q2
= 3.0 (GeV/c)?, on the other hand, one sees that the
nucleon resonances are largely reduced, and the inelas-
tic background enhanced. Furthermore, F3 in the higher
resonance regions is larger than F; in the N — A transi-
tion region. Apparently, a swap of strength has occurred
between the various channels.

To further illustrate how the nucleon resonances seem
to follow a valence-like curve, we show in Fig. 2 the
behavior of the N — A transition region (here defined as
1.2 < W2 < 1.9 GeV?) and the second resonance region
(defined as 1.9 < W? < 2.5 GeV?) for various Q? as a
function of €, in comparison with the global scaling curve
defined above. As concluded in Refs. [13,14], it seems
that the nucleon resonances slide along one global scaling
curve (note that the difference between Figs. 1 and 2 is in
essence just the conversion from W2 to ¢, for fixed Q2).
One can see that, if nature forces the oscillatory behavior
around a global scaling curve at low Q?2, the resonance
excitation strengths will necessarily grow if they are in
the region below the £ & 0.25 where the maximum of the
global scaling curve occurs, and subsequently decrease
once the maximum of the global scaling curve has been
crossed. Compare for instance the behavior of the N — A
transition with the larger-mass resonance regions: at Q2
= 0.45 (GeV/c)? (solid circles in Fig. 2 (top), and Fig.
1c) the N — A transition strength is large being at about
the maximum of the scaling curve. Its strength, as for
all Q% < 0.45 (GeV/c)?, is also larger than the higher-
mass resonances which lie at lower £ for the same Q2. On
the other hand, for Q% ~ 3.0 (GeV/c)? (open circles in
Fig. 2(top), and Fig. 1h) the N — A transition strength
is small because it is positioned at large £, and smaller
than the higher-mass resonances that lie at lower values
of £, but have crossed the maximum of the scaling curve.
The smooth curve, to which the nucleon resonances tend,
determines the momentum transfer dependence of the
various nucleon resonance regions, forcing the nucleon
elastic and transition form factors to scale like Q~* [18]
at relatively small Q?, and therefore resemble the Q~*
scaling as predicted by PQCD.

In Fig. 3 we show a compilation of the world’s electron-
proton scattering data for the F5 structure function at
low Q2. The deep inelastic (invariant mass squared W2 >
4 GeV?) data originate from SLAC [19}, CERN (NMC)
[20], FNAL (E665) [21], and DESY (H1,ZEUS) (22-27].
As before we include data from the proton resonance re-
gion from SLAC [15] and JLab [13]. The solid curves
indicate the next-to-leading order parameterizations of
Gliick, Reya, and Vogt (GRV) [28,29], which use input
parton distributions starting from very low Q? values. In
the third panel of Fig. 3, the GRV calculation is in fact
the GRV input distribution at Q% = 0.4 (GeV/c)? [29],



without any evolution, neglecting sea and gluon contri-
butions. As one can see the proton resonance region data
for Q% = 3.1 (GeV/c)? and Q? = 0.9 (GeV/c)? smoothly
join the deep inelastic data, and agree well with the GRV
next-to-leading order calculations, exhibiting the local
duality witnessed by Bloom and Gilman {1,2].

Turning our attention to the bottom two panels of Fig,.
3, the low Q? F, data, we are only left with the recent
DESY data [25,26], some sparse FNAL data [21], and the
nucleon resonance data [15,13]. The DESY data exhibit
the well-known collapse of the proton structure functions
at (very) small z. One interpretation of this effect is
that, at these small Q2, one sees a smooth transition
from deep inelastic scattering to the real photon point
at Q% = 0 [26,30,27]: gauge invariance requires that for
consistency near Q2 = 0 the structure function F; for in-
elastic channels must vanish like Q%a(yp)/(4m%aem) [30].
On the other hand, the nucleon resonance data, at =z =
0.1, do not exhibit such a drastic collapse with @2, and
stay fairly constant. In fact, they still seem to oscillate
around one Q2-independent global curve [13], informing
us that the Q2 dependence of the larger = nucleon res-
onance data is rather shallow. It is this behavior that
makes the scaling curve in Eqn. 1, defined by the world’s
nucleon resonance F> data, look “valence-like” [13].

We emphasize here the difference in reaching the low
Q? region for the various values of = (see also Fig. 4). For
the DESY experiments, low Q? is established at small z
by having a large (~ constant) amount of energy trans-
fer v. For this reason, we naively expect this region to
exhibit similar characteristics as the parton model. For
the JLab/SLAC experiments at z & 0.1, one reaches low
Q? at relatively small energy transfers. In fact, if one
would restrict oneself to the nucleon resonance region
(M? < W? < 4 GeV?), the nucleon resonances “slide”
down the z scale to lower z for lower Q2 (e.g., see the con-
stant W = 2 GeV arrow in Fig. 4), where their strength
dies out, as a function of Q?, due to gauge invariance.

III. MOMENTS OF Ff

Now, we construct both the Cornwall-Norton and
Nachtmann moments from the world’s data for the F»
(= vW,) structure function, for the Q? range up to 10
(GeV/c)?. The Cornwall-Norton moments are defined as

Tth
0

Ma(@) = / " dza™ 2 Wa(z, Q2), ()

and the Nachtmann moments as
Ma(Q%) = / R
[3 +3(n+ 1)r + n(n + 2)r?
(n+2)(n+3)

] vWa(z,Q%). (3)

Here, r = (1 + 4M?222/Q?)'/?, and zin, is Bjorken z
for pion threshold. We add to these integrals the elastic
contribution, at z = 1, where

(ehi@n+ Fmct@)
5

GE (Gum) is the proton electric (magnetic) form factor.
For the proton form factors, we use a fit to the world’s
data by Bosted [31].

To obtain the inelastic contributions we integrate data
like those shown in Figs. 1 and 3. Apart from the data
shown in Fig. 1, we have added Q2 points where addi-
tional data was available. For Q2 < 0.6 (GeV/c)? we have
constrained our search to elastic and nucleon resonance
data. For 0.6 < Q% < 4 (GeV/c)? we have used nucleon
resonance data in combination with deep inelastic data,
whereas for Q% > 4 (GeV/c)? we have constructed the
moments utilizing both deep inelastic and nucleon reso-
nance models, similar as in Ref. [32]. For the smallest
values of Q% (< 0.6 (GeV/c)?), we assume a constant
value of F; below z for W2 = 4.0 GeV?, as no data ex-
ists. As one can see from Fig. 3, this may not be a bad
approximation for Q? < 0.6 (GeV/c)?, especially since
the nucleon resonance region data extend down to z <
0.1, and the integration area below x = 0.1 is expected
to be small only. To judge the uncertainty in this proce-
dure, we have also integrated the Q% ~ 0.2 (GeV/c)? data
starting at W2 = 9.0 GeV? (rather than W2 = 4.0 GeV?).
This changes the second moment by less than 3%. Lastly,
in some cases, we used a model to construct data at fixed
Q?, rather than allowing for the small range of Q? in the
data. This effect on the second moments was found to
be small, < 3%, and far smaller on the higher moments.
Thus, we believe the total uncertainty in the moments
we calculate to be less than 5%. We show the values
for the second, fourth, sixth, and eigth Cornwall-Norton
(top) and Nachtmann (bottom) moments of the proton,
extracted from the world’s data, including deep inelastic,
nucleon resonance, and elastic data, as described above,
in Fig. 5. Similarly, Tables I and II list the numerical
values of the moments, with the elastic contribution to
each separately given.

As expected, the elastic contribution dominates the
moments at the lowest Q2. Note that the Cornwall-
Norton moments will become unity, i.e. the proton
charge squared, at Q% = 0, whereas the Nachtmann mo-
ments will vanish at Q2 = 0, as can readily be seen from
Eqn. 3. We believe the latter is due to the fact that, with
respect to Bjorken z, the Nachtmann scaling variable £
correctly takes into account the finite proton mass scale
(8], but does not account for any other significant mass
scale (like the quark masses). As the interpretation of
the Cornwall-Norton moments in the Q2 < 1 (GeV/c)?

YWa(z,Q?) = 6(1 — ) . (4)




region seems more intuitive, and we are interested here in
the low-Q? behavior of the moments, we will concentrate
on these moments in the remainder of the discussions in
this work. To emphasize that there is indeed not much
difference between the Cornwall-Norton and Nachtmann
moments if one concentrates on the low-Q? region where
the elastic contribution turns dominant, Fig. 6 graphi-
cally displays the relative contribution of the elastic chan-
nel to the total moment for both Cornwall-Norton (top)
and Nachtmann (bottom) moments, for n = 2 (solid cir-
cles), n = 4 (squares), n = 6 (triangles) and n = 8
(stars), from Tables I and II. Nonetheless, as the ben-
efit of the Nachtmann moments is to push an analysis in
terms of an Operator-Product Expansion to lower values
of Q?, taking correctly target-mass effects into account,
we show everywhere similar figures, for comparison, for
the Nachtmann moments. Note that one can argue that
the relative contribution of the elastic grows slower for
Q? — 0 if one uses the Nachtmann moments.

First, let us revisit the Q2 > 10 (GeV/c)? behav-
ior of the lower moments. For any non-singlet moment
MDN5(Q?) QCD predicts [7,9] at asymptotically large Q?
that

_1/4NS
MY5(Q?) = An(In(Q?/A%)) ™47, ()
where A is the QCD scale parameter and
dn® = 3% [2Po, (6)

where 8, = 11 - (2/3)Ny, with Ny the number of flavors,
and 7., are the leading-order non-singlet anomalous
dimensions numerically specified in (7). To circumvent
the requirement of non-singlet moments we highlight in
Fig. 7 the n = 4 moment: although we use the same F3
structure function data for all moments, the weighting
with "2 in these moments will emphasize the large-z
region, at higher n, and thus approximate a non-singlet
moment. On the top of Fig. 7 we show the Cornwall-
Norton moment, on the bottom the Nachtmann moment
(each to the power —1/dY5). We show the data in a
log-log plot, thus emphasizing the low-Q? region. The
moments are shown both with (stars) and without (open
circles) the elastic contribution included. The dashed
curves exhibit a fit to the data, from [32], limited to Q?* >
20 (GeV/c)? to minimize the effect of higher twist, in
the form P;ln(Q2%/A?%). In [32], this fit gives Py = 27.46
(27.05) & 0.25 (0.24) and A = 250 MeV, for the Cornwall-
Norton (Nachtmann) moment, rendering the expected
logarithmic scaling behavior in QCD at asymptotic Q2.
The dotted (dot-dashed) curves exhibit similar fits in the
form (P; + P2/Q% + P3/Q*)In(Q%/A?) down to Q* = 2.0
(GeV/c)? from the same Reference [32], taking into ac-
count higher twist coefficients in terms of 1/ Q?and 1/Q*.
Numerical values for the 1/Q? and 1/Q* coefficients are
P, =0.33 +0.04 (0.33 £ 0.04) and P3 = 4.69 +0.19 (1.61
+ 0.15) for the Cornwall-Norton (Nachtmann) moment

(see also the caption of Fig. 7). One can easily ver-
ify from Fig. 7 that the magnitude of the P; coefficient
is in this case dominated by the inclusion of the elastic
contribution. Similarly, the Nachtmann (n = 4) moment
analysis gives a drastically different value for P3 from the
Cornwall-Norton (n = 4) moment analysis mainly due to
the different contribution by the elastic.

In Fig. 8 we show the second (Fig. 8a), fourth (8b),
sixth (8c) and eigth (8d) Cornwall-Norton moments for
Q? < 5 (GeV/c)?, separated in the elastic contribution
(squares, due to our choice of vertical scale sometimes
only visible at the higher @2), the contribution of the
N — A transition region (triangles, 1.2 < W2 < 1.9
GeV?), of the second resonance region (open circles, 1.9
< W2 < 2.5 GeV?) and of the “deep inelastic” region
(stars, W2 > 4 GeV?). The total moment is given by
the solid circles, and the curves connect the various data
to guide the eye. The chosen finite W? regions will start
contributing to the moments at low Q2, recovering part
of the loss of strength due to the fall-off of the elastic con-
tribution, and then also die off, as the resonances move to
the larger ¢ side of the scaling curve. The contribution of
the W2 > 4 GeV? region does not die off, as this is not a
finite W region, so higher-W? resonances and/or higher-
W2 inelastic background start becoming important with
increasing Q?, eventually yielding the logarithmic behav-
ior of the moments prescribed by QCD. As evidenced by
the difference between the W2 > 4 (GeV)? contribution
and the total moment, the contribution of the region of
W2 < 4 GeV? is non-negligible up to Q% ~ 5 (GeV/c)?,
even for the second moment. Similar conclusions can be
drawn from the various Nachtmann moments, shown in
Fig. 9.

Although the dynamical origin of local duality is still
not understood, it seems intricately intertwined with the
behavior between the Q2 — 0 point, where only elas-
tic scattering contributes to the moments, and Q% > 5
(GeV/c)?, where deep inelastic scattering already dom-
inates the lower moments. In the region 0.2 < Q? <
5 (GeV/c)? the nucleon resonances contribute to a sub-
stantial part of the moments, and, in their average, seem
indistinguishable from deep inelastic scattering at Q% >
1 (GeV/c)?, consistent with the findings of Bloom and
Gilman [1,2] and as quantitatively shown in Ref. [14] for
the second moment. In the very low Q2 transition region,
Q? < 1 (GeV/c)?, the contribution of the coherent elas-
tic peak to the second moment dies out, whereas the nu-
cleon resonances already show the onset of their duality
behavior, in that they tend to oscillate, already at Q2 ~
0.2 (GeV/c)?, around a smooth curve [13]. Furthermore,
the nucleon resonances shuffle their strength around such
that, at Q2 = 1 (GeV/c)?, they have reached the same
behavior as a function of z as one would expect from
deep inelastic data.

We note here also that the behavior of the second
Cornwall-Norton F; moment we extract is very similar to



the behavior in the second moment of the spin-dependent
g1 structure function {33]. Presently we only have sparse
g1 data in the nucleon resonance region, for 0.1 < Q% <5
(GeV/c)?, such that we can not verify precisely whether
the spin-dependent nucleon resonance data tend to oscil-
late around a similar smooth curve. However, the limited
data are not inconsistent with such a behavior [34]. Also,
we presently do not have enough data for the longitudinal
structure function Fy to verify a similar onset of duality
[35], although sparse hints do exist in the present world’s
data [36].

IV. DISCUSSION OF RESULTS

Our findings, that the moments of F; show a smooth
transition from deep inelastic scattering down to Q2 ~
0 (GeV/c)?, and that the nucleon resonances tend to os-
cillate around one smooth curve, support the findings
of Ref. [37,38] that higher-twist effects are small if one
looks at the low-Q? behavior of F; for Q% ~ 1 (GeV/c).
The dynamical process of local duality dictates mini-
mal Q? dependence of F; at small Q?; in terms of the
Operator-Product Expansion, this can be explained if
the higher-twist effects are reduced on average in the
nucleon resonance region [39]. Nonetheless, higher-twist
effects must be responsible for the nucleon resonances
themselves. The results for the lower moments of Fj,
presented here, show a forced transition from the elastic
point to the large Q? limit, supported by the oscillations
of the nucleon resonance region around one smooth curve
at low Q2. This smooth curve resembles the deep inelas-
tic data at Q% ~ 1 (GeV/c)?, and higher-twist effects
continue to be small from there on.

The extension of a pQCD analysis to very low val-
ues of Q2 (< 2 (GeV/c)?) is hampered by the fact that
here even the low n moments are mainly sensitive to the
inclusion of the elastic contribution (as this contributes
already close to 10% to the n = 2 moment at Q% = 2
(GeV/c)?), thus soon rendering a meaningless interpre-
tation in terms of higher-twist effects. If one would like
to fit the moments to lower values of Q2, one would soon
end up with coefficients for higher-twist coefficients (in an
expansion of (1/Q?)™) that start being large, while sub-
sequent coeflicients will tend to opposite signs to cause
the cancellation required to make the moment a slowly
varying function of Q2 only. These cancellations are evi-
dently of non-perturbative origin and their origin has to
be sought through mechanisms other than the twist ex-
pansion. Similarly, if one neglects the elastic channel, one
will at low Q? be mainly sensitive to the imposed con-
straint by gauge invariance that the structure function
F, must behave like Q%0 (yp)/(4r%cem) [30].

At the values of z where the nucleon resonances are
visible at low Q? in Fig. 3 (e.g. = = 0.1), the F; struc-
ture function does not yet linearly vanish with Q2 yet,

as shown in [13]. Thus, although the Fy strength in
the nucleon resonance region has to disappear linearly
with Q? below some Q2, one can argue that the behavior
of the data is not reflecting this Q2 < Q3 expectation
yet. This indicates that the oscillations the nucleon res-
onances exhibit around a smooth curve, even down to
Q? ~ 0.1 (GeV/c)?, is non-trivial. As the low-Q? F;
data below W2 = 4 GeV? predominantly consists of ex-
cited nucleon resonances, and hardly contributions from
inelastic non-resonant processes, one can argue that such
a smooth curve must be close to a curve consisting of va-
lence strength only. In fact, the Q% dependence of the in-
tegrated valence quark strength in the GRV model [28,29]
is close to the Q% dependence of the second Cornwall-
Norton moment of F>. However, this Q2 dependence is
predominantly due to the inclusion of the elastic channel.
Thus, for a picture such as the GRV model to be valid,
there must be a separate Q2 dependence for the vanish-
ing of the large-z strength at small Q% (governed by the
nucleon resonances) and the growth of the small-z sea.

V. CONCLUSIONS

We show that the world’s data on F, down to Q2 =~
1 (GeV/c)?, are reasonably well described by the GRV
model. This includes the nucleon resonance data, which
average to a scaling curve, due to local duality. Down to
Q? ~ 0.1 (GeV/c)?, the nucleon resonance data still tend
to oscillate around one smooth curve. The contribution
of the nucleon resonances to the lower moments of Fj
die out at very small Q2 as they have moved to smaller
Bjorken z. Instead, the moments below Q2 ~ 1 (GeV/c)?
are governed by the elastic contribution. Thus, an anal-
ysis of the moments of Fy in terms of the Operator-
Product Expansion will render higher-twist terms which
are predominantly due to the elastic contribution. Local
duality seems to prescribe the transition from this elastic
contribution to the logarithmic scaling region.
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TABLE I. Cornwall-Norton Moments for n = 2, 4, 6, and 8
at 0.15 < Q% < 4.3 (GeV/c)?, as extracted from the data (see
text). The elastic contribution is given as a separate column.
The uncertainties of the total moments are smaller than 5%.

Q? (GeV/c)?| elastic] n=2 n=4 n=6 n=38§|
0.15 0592 0652 0594 0592  0.592
0.20 0.504| 0.584 0.508 0505 0.504
0.45 0249| 0379 0261 0251 0.250
0.55 0.195| 0341 0210 0.198 0.196
0.85 0.103| 0278 0.122 0107 0.104
0.94 0.087| 0.264 0107 0092 0.088
1.40 0.040| 0231 0.064 0.047 0.043
1.70 0.026| 0219 0051 0034 0.029
2.40 0.011| 0.203 0036 0019 0.014
3.00 0.006| 0.196 0.030 0013  0.009
3.30 0.005| 0192 0028 0012 0.008
4.30 0.002| 0.184 0.023 0008 0.005

TABLE II. Nachtmann Moments for n = 2, 4, 6, and 8 at
0.15 < Q* < 4.3 (GeV/c)?, as extracted from the data (see
text). The elastic contributions, different for each n, are given
as a separate entity in the columns. The uncertainties of the
total moments are smaller than 5%, and the numbers quoted
can be used to this precision.

Q?ln=2 n=4 n==6 n=2_8

elas. total| elas. total| elas. total | elas. total
0.15[0.274 0.333]0.040 0.041]0.0051 0.0052|0.0006 0.0006
0.20] 0.256 0.322]0.047 0.049]0.0074 0.0075]0.0011 0.0011
0.4510.160 0.281]0.050 0.057/0.0139 0.0146|0.0037 0.0038
0.55]0.131 0.268]/0.046 0.056|0.0146 0.0157}0.0045 0.0046
0.85]/0.076 0.243]|0.034 0.047}0.0137 0.0157]|0.0054 0.0057
0.94]0.065 0.235|0.030 0.045]0.0130 0.015410.0054 0.0058
1.40]/0.032 0.217]0.018 0.036|0.0093 0.0128]0.0047 0.0055
1.70]/ 0.022 0.209(0.013 0.033|0.0073 0.0114]0.0040 0.0051
2.4010.010 0.197]|0.007 0.027|0.0041 0.00890.0026 0.0040
3.00/0.005 0.192]0.004 0.024}0.0026 0.0075|0.0018 0.0033
3.30| 0.004 0.189]0.003 0.023{0.0021 0.0071(0.0015 0.0031
4.30(0.002 0.181]0.001 0.020]/0.0011 0.0058{0.0008 0.0024
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FIG. 1. F, Spectrum in the nucleon resonance region as a
function of W2, for values of Q% = 0.07 (a), 0.20 (b), 0.45
(c), 0.85 (d), 1.40 (e), 1.70 (f), 2.40 (g), 3.00 (h) and 3.30 (i)
(GeV/c)?. We have superimposed the results from the scaling
curve from Ref. [14], to illustrate the behavior of the nucleon
resonance region with increasing QZ.
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FIG. 2. F; data for the regions 1.2 < W2 < 1.9 (top) and
1.9 < W2 < 2.5 (bottom) GeV?, as a function of Nachtmann
¢. Data are shown for Q% = 0.07, 0.20, 0.45, 0.85, 1.4, 2.4, and
3.0 (GeV/c)? (left to right), respectively. The solid curve rep-
resents the scaling curve, determined by averaging all nucleon
resonance data {14].
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FIG. 3. F, as a function of z for four values of Q%, with
a logarithmic = scale. The symbols indicate various experi-
ments, as cited in the text. The solid curves in the top two
panels represent the calculated distributions from the GRV
collaboration [28,29], evolved from Q* = 0.4 (GeV/c)®. The
solid curve in the third panel represents the input distribution
itself.
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FIG. 4. Kinematics region of the world’s F, structure func-
tion data, for Q* < 10 (GeV/c)®. Thin lines are for fixed
Bjorken z. The dashed line is for fixed W = 2 GeV, indi-
cating the border of the region typically associated with the
nucleon resonances (the other border being fixed W = M, or
z = 1). The dashed area exhibits the kinematics region of the
recent DESY measurements [22-26]. The thick arrows indi-
cate various manners in which one can reach the limit Q* —
0, at fixed z, fixed W, or fixed v.
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FIG. 5. Cornwall-Norton moments (top) and Nachtmann
moments (bottom) extracted from the world’s electron-proton
scattering data, for n = 2, 4, 6, and 8. The solid curves in-
dicate the elastic contribution. At low Q% (< 4.3 (GeV/c)?)
the moments (stars) are directly constructed from the world’s
electron-proton F database (see text). At larger Q*, the mo-
ments have been extracted from appropriate fits to the world’s
data on inclusive scattering to both the nucleon resonance and
deep inelastic regions {32].
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FIG. 6. Contribution of the elastic channel to the Corn-
wall-Norton moments (top) and Nachtmann moments (bot-
tom) extracted from the world’s electron-proton scattering
data, for n = 2 (solid circles), 4 (squares), 6 (triangles), and
8 (stars), up to Q% = 5 (GeV/c)?. The data are from Tables
Iand IL
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FIG. 7. Log-log plot of the n = 4 Cornwall-Norton (top)
and Nachtmann (bottom) M, (Q?%) /% moment as a func- 5
tion of Q?, where dn = 7o"/20B, [5]. Stars (open circleg
do (do not) include the elastic contribution. In the top
plot, the dashed curve is a fit to the n = 4 moment in
the form Piin(Q?/A?), from [32], with P, = 27.46 (4 0.25),
and A = 250 MeV. Similarly, the dotted curve uses a form *' [

0.03

0.02

(P1 + P2/Q%)In(Q?*/A?), with P, = 0.33 (+ 0.04), and the 0.01
dot-dashed curve uses a form (Py+Pa/Q%+Ps/Q%)in(Q%/A%), **
with Ps = 4.69 (+ 0.19). In the bottom plot, the fit param-
eters are P, = 27.05 (+ 0.24), P, = 0.33 (+ 0.04), and P; = ° °
1.61 (* 0.15), respectively [32].
0.01 0.006
0.0075
0.004
0.005
0.2 0.03 [~ 0.002
= 0.0025
0.15
0.02 o , 2 3, 4 o 1,2 34
01 Q’ (GeV/c) Q* (GeVre)
0.01
0.05
FIG. 9. Second (a), fourth (b}, sixth (c) and eigth (d)
%, 1 2 3 o Nachtmann moments. Contributions due to the elastic peak
Q? (GeV/e)? (squares), the regions 1.2 < W? < 1.9 GeV? (triangles),
0.01 [+ e " 0.006 19 < W? < 2.5 GeV? (open circles), and W2 > 4 GeV?

(stars) are separately shown, in combination with the total
moment (solid circles), as a function of the momentum trans-

0.004 - B fer. Curves connect the various data, and are to guide the eye
only.
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FIG. 8. Second (a), fourth (b), sixth (c) and eigth (d)
Cornwall-Norton moments. Contributions due to the elastic
peak (squares), the regions 1.2 < W? < 1.9 GeV? (triangles),
1.9 < W? < 2.5 GeV? (open circles), and W? > 4 GeV?
(stars) are separately shown, in combination with the total
moment (solid circles), as a function of the momentum trans-
fer. Curves connect the various data, and are to guide the eye
only.



