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The Design of the Electrostatic Bend

1 Introduction

The Illinois/CEBAF polarized electron source incorporates a novel spin manipulator sys-
tem first proposed by E. Reichert [1]. The system consists of two 107.7° electrostatic bends
separated by four solenoids and followed by four solenoids. This technical note describes
the procedures used in the design of the electrostatic bends.

In order to bend our electron beam, it is necessary to employ a radially concentric
toroidal condenser (see Figure 1). Due to the absence of a ‘nice’, fully 3-D, electrostatic-
ray-tracing program, we must complete our design analytically. In the ensuing discussion
we follow closely the work of Wollnik [2] and Wollnik, Matsuo, and Matsuda [3]; and adopt
the conventions of reference [2] whenever possible.

2 Definitions Used

Before proceeding, we pause to define the coordinate system and parameters we use to
characterize a toroidal condenser; Figure 1 displays the coordinate system while Figures 2
and 3 display the parameters. '
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- Figure 1: The coordinates used in characterizing a toroidal condenser.



Figure 2: The radii that characterize the electrodes and 0 V equipotential of a toroidal
condenser.

2.1 The Coordinate System

First, we assume that the electrodes are radially concentric and that the optic axis lies in the
0 V equipotential surface and has a radius of curvature po. If we now let z and y represent
small deviations from the optic axis in the horizontal and vertical directions (respectively),
then by choosing to work the problem in cylindrical coordinates, the radial coordinate
becomes p = py+ z, the axial coordinate becomes y, and the azimuthal coordinate becomes
z.

2.2 The Parameters

A general toroidal equipotential surface is described by two radii: the vertical radius of
curvature and the horizontal radius of curvature. We show in Figure 2 the inner electrode,
the 0 V equipotential surface, and the outer electrode of a toroidal condenser. We signify
the horizontal (vertical) radius of curvature of the inner electrode, the 0 V equipotential
surface, and the outer electrode as pin, po, and poue (Rin, Ro, and Roy) respectively.
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Figure 3: A cross sectional view of a complete toroidal bend in the y = 0 plane.

In Figure 3 we show a cross sectional view of a complete toroidal bend (including both
the electrodes and the fringing field shunts) in the y = 0 plane. We use this figure to assist
us in the definition of five more parameters: '

2Go Electrode gap

2G  Shunt gap

D  Electrode/shunt gap

¢*  Electrode/effective-field-edge spacing

wo Angle enclosed by the effective field boundaries (the bend angle)

3 Design Criteria

In order to define our bend mechanically, we must specify ©o, po, Piny Pouts Fin, Fout;
¢*, the vertical radius of curvature of the fringing field shunts, and the radial deflection
suffered by the effective electron trajectory at the field boundaries (A{). As it behooves
us to maintain the radial inhomogeneity of the bend’s electric field, we equate the vertical
radius of curvature of the grounded shunts to Rp.

To allow us to arrive at meaningful values for the nine parameters above, we observe
four criteria in the design of the bend.

1. We wish to bend our 100 kV electron beam through an angle of 107.7° (which corre-
sponds to a 90.0° spin precession at this energy).
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2. Because we want to use relatively inexpensive, commercial power supplies, we limit
the electrode potentials to < 15 kV. We therefore choose a design potential of +14 kV
for the inner electrode and -14 kV for the outer electrode.

3. We desire that the optical properties of the bend in the z direction be as similar as
possible to the optical properties of the bend in the y direction (where z and y are
defined by Figure 1).

4. Due to emittance and energy spread considerations, we require our electron beam to
traverse the bend along the 0 V equipotential.

4 Theory

4.1 Transfer Matrices

In order to be able to compare the optical properties of the bend in the z and y directions,
we must know the first order ‘equiitions of motion of an electron beam as it traverses the
bend. To write the equations of motion in the customary matrix form, we introduce the
4 X 4 matrices ¥ and S. F represents the defocussing of the beam in the z direction as it
crosses the bend’s effective-field boundaries: '

1 000
L 0
0 001
where
2
Fau= 12,(:;0 2In \/D2 f(f;: o7 - %’ cos™! (1 ol ?éz = G)’)] . (2
S represents the sector-field focussing of the condenser:
Su S22 0 0
s=1 0T se s ®)

0 0 Sg S“

where
Su=8n=cos(kzpopo), Ss=S8u=cos(ky,powo),

Sip = sin (k; po qpo.)

1 ’ S = —kzsin (k: po po) , (4)
in (k '
Sy = Em(;;ﬂ ’ S43 = —kysin (k, po o) ,
v



with

vV1—n; + =2 Vv Eyeam
kz. — l 'T . kv = ﬂ ’ nl — & 3 Fr —— & (5)
Po Po Ry m,

If we take ' = dz/dz and y' = dy/dz, and if we let a subscript ¢ (f) refer to conditions
at the entrance (exit) of the bend, then we can finally write the equations of motion as

Iy "1:"
! !
z‘f = }-S .7'- 17.‘ ]
Yy Yi
v} vi
or rather
zs Su+812Fn S12 0 0 *i
s _ Sn+2SuFun+812Fs Su+8ueFa 0 0 z; (6)
y} 0 0 Si3 S Y

4.2 Electrostatic Potential

We can express the electrostatic potential (¢) between the condenser’s electrodes as a
power series in z and y: ' '

o) = Fom T 34 (i) (%) , ™)

where we assume that the equilibrium point about which the potential is expanded (z =
y = 0) lies in the 0 V equipotential surface. Note that E, is the electric field strength at
the optic axis (z = y = 0) which will cause the beam to be bent along a curve of radius po.

By requiring a solution to Laplace’s equation, it is possible to generate a recursion
relation for all the nonzero g;; in equation 7 in terms of the a;o:

0= (i+1)aij42 + aiyr 42+ (0 +2) iz, + aiys; - (8)

The first six a;o are given by

ap = 1,

G = -1 -n,

azx = 2+2n;+n?—n,,

ap = —6—5n;—5n34+2n;+6n;n,,

aso = 24+19n; +13n2 + 1508 — 6n} 9)

—7712—18111112—24“?‘02-{-6“%,
age = —120—-93n; —60n? —30n? —57nf+30n]

+33ny+ 7201034+ 11702 ny + 6003 — 18n2 — 907, n3,
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where

(10)

Sh % "“d(ﬁ))

with R(z) being the vertical radius of curvature of any eqmpotentla.l surface t.hat intersects
the y = 0 plane at z.

5 Applying Design Criteria

From Section 3, we know that we have to assign values to o, po, fin, Pouts Ro, Riny Rout, ¢*,
and A{ in order to define our mechanical design. If we concentrate on determining values
for the set of variables Gy, G, D, o, ny, 1y, Eg po, and po, which are easier to manipulate,
then values for the mechanical parameters become transparent. It turns out that common
sense plus the four design criteria listed in Section 3 provide sufficient constraints to allow
us to complete our design.

5.1 Criterion 1

Application of criterion 1 tells us two things. First, we see that
wo = 107.7°. (11)
Second, bjr equating the electrostatic force on the electrons with the centripetal force they

experience as they traverse the bend, we see that

¥ m, v?

Po

By utilizing the facts that m, = 511.1 keV, that 4 = 1.196, and that v> =1 — =2, we can
obtain a value for the product of E, and po:

eEy =

Eopo=1.839 x 10° V. (12)

5.2 Common Sense and Criterion 2

At this point in the design process, we consult our common sense to help us narrow the
range of acceptable values for our parameters. We don’t have enough design criteria to
fully specify every parameter.

First, for the sake of simplicity, we allow
R(z)=Ro+z. (13)
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Then equation 10 becomes

d
ﬂ2=Po"—( Po)

ng = —nl. (14)

Second, we consider po. We would like to make po as large as possible so that the bend
would not focus “too hard.” The upper limit of po is determined by the capabilities of the
lathe available in our machine shop, and is estimated to be ~ 10-12 cm. So we shall take

po~ 1l cm. (15)

Finally, in the context of equation 15 and of criterion 2 (which tells us that the
potential difference between the two electrodes is AV = 28 kV), we consider Gy, G, and
D. As 2G, goes roughly as po AV/Eq po, we can use equation 12 to see that

2Go ~ 1.7 cm. (16)
As it is simple to keep the shunt gap equal to the electrode gap, we choose
2G~1.7cm (17)

also. Finally, in picking D we shall choose a nice round number such that the average
electric field along the ends of the electrodes facing the shunts (~14kV/D)is <20 kV/cm.
We choose

,D =1.0cm. - (18)

5.3 Criteria 2 and 3

Co-application of criteria 2 and 3 allows us to exactly determine the quantities Go, G, D,
po, and n,. These five parameters, together with the already known values of g, n2, and
Eo po, allow us to determine all of the mechanical parameters. We now detail the steps
used to arrive at our values for Gy, G, D, po, and n;.

1. From Section 5.2 we have initial guesses for the values of po, D, G, and Go.

2. Application of criterion 3 to equation 6 causes us to equate Sy + S12F 2 with Sx.
Using numerical methods to solve

0=38n+812Fn — S, (19)

it is possible to arrive at a value for n,which equalizes as much as possible the optical
properties of the bend in the z and y directions. We include at the end of this note
a listing of the program, PARAMN, used in this step.
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3. Aplication of criterion 2 to equation 7 and utilization of equations 9, 10, 12, and 14
allow us to write two equations in the y = 0 plane: one for the outer electrode

0.07613 = by X' + by X% + by X° + by X* + bg X° + bg X® (20)
and one for the inner electrode
—0.07613 = by X + by X2 + by X3 + by X* + bs X5 + bg X6, (21)

where we have truncated the series in equation 7 after six terms, and where

X = z/po,

bh =1,

b = (-1-ni)/2,

by = (2+2n,+2n2)/6, (22)

be = (—6—5n —Tn?—6n3)/24,
bs = (24+419n; +20n? +33n3 + 24nt)/120,
b = (—120-93n;, —93n] —102n] —192nf — 120n%)/720.

Using numerical methods to solve equations 20 and 21, it is possible to arrive at
values for p;, and po,. We include at the end of this note a listing of the program,
ELEC, used in this step.

4. We set 2G=2GO=Pout_Pin-

5. We iterate through steps 2—4 until the process converges.

5.4 Criterion 4

In order to arrive at analytical solutions for the effects of the bend’s fringing fields on
electron trajectories, it is necessary to consider an effective beam trajectory. As is shown
in Figure 4, the effective trajectory is straight outside the effective field boundary, circular
inside the effective field boundary (coincident with the optic axis), and normal to the effec-
tive field edge. The fringing field effects are accounted for by a small radial displacement
(A) of the effective trajectory at the field boundary. We say that as the electrons enter
(exit) through the effective field edge, they suffer a radial kick of —|A¢| (|A€|), where

G? D\? G G\?
At ~ -0 10154 0.04 (—) 0.04 (-—-—) 0.05 (——) ] 23
{ Po T Go * Go + Go ( )

Application of criterion 4 suggests letting po — pp — |A¢|. Doing so and recalculating n,,
Pin, and poy as per steps 2 and 3 of Section 5.3 finally gives us self consistent values for all
of the working parameters.
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Figure 4: A schematic diagram to demonstrate the concept of the effective beam trajectory.

6 Results

6.1 Working Parameters

The results of applying our design criteria towards the working parameters are summarized
in Table 1. '

6.2 Mechanical Parameters

We now derive the neécessary mechanical parameters from the working parameters listed
in Section 6.1. We already know that

po=11.081cm and o =107.7°. (24)
Using the values for po and n; in equations 20, 21, and 22, we find that
Pin =10292cm and pgy =11.987 cm. (25)
As Ry = Ro + (pout — po) and as Ry, = Ry — (po — pin), We see that
Ry, =12.739cm and Rgy = 14.434 cm. (26)

By substituting the values for G, Gy, D, and p, into equation 23, we can determine that
A =0.019 cm. (27)
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Table 1: Design Parameters for the Electrostatic Bend

Quantity || Design Value

Go I 0.8475 cm
G 0.8475 cm
D 1.0 cm
Po 11.081 cm
n, 0.8191
ny -0.6709
Yo ) 107-70

Eq po 183.9 kV

Finally, by using the formula

Y S S W RN
. T \/D2+(GO+G)2\/D2+(GO—G)2 2G, D? + (Go — G)?
D ( D'+G* -G )] (28)
Go VD?+(Go + G)*/D? + (G, - G)?

with our values for G, Gy, and D we can show that

¢* = 0.411 cm. (29)

6.3 Interpretation

Finally, in this section we summarize all of the pertinent mechanical parameters of the bend
design. In doing so, we try to interpret the design data along the mechanical-engineering
lines required by our draftsman and machinist.

The electrostatic bend can be broken down into two basic parts: the condenser elec-
trodes and the fringing-field shunts. The schematic drawings in Figures 3 and 4 may help
interpret the data and aid in the understanding of the relationship between the actual
trajectory of the beam and the geometric parameters of the bend.

We first consider the electrodes. The inner electrode should have a vertical radius
of curvature of 12.739 cm and a horizontal radius of curvature of 10.292 cm. The outer
electrode should have a vertical radius of curvature of 14.434 cm and a horizontal radius
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Figure 5: Schematic representation of the effective trajectory and the related numerical
values for our electrostatic bend.

of curvature of 11.987 cm. Also, both electrodes should subtend an angle of

0.411
o __ o __ =1 = . o __ .
103.4° = 107.7° — 2 sin (—-11_081) 107.7° - 20
Furthermore, the electrodes should be assembled so that the radius at which the effective
beam trajectory intersects the effective field boundary is 0.019 cm greater than the radius
of the optic axis at the effective field boundary.

We now consider the shunts. The shunts should have a vertical radius of curvature of
13.528 cm and an opening gap of 1.695 cm. Also, the shunt face closer to the electrodes
(the inward shunt face) should be aligned along a radius such that the angle subtended by
the inner shunt faces is

113.68° = 107.7° + 2 tan-" { 0.589 — 0.019(0.411/11.081) 1 }

cos[sin~*(0.411/11.081)] 11.1

Furthermore, the shunts should be assembled so that the effective beam trajectory passes
through the center of the shunt gap at the inward faces at a radius of

589 — 0. 411/11.081)) 2
11.116cm=\J11.1002+{0589 0.019(0.411/ )}

cos[sin~(0.411/11.081)]

We note that the mechanical realization of the bend and its associated vacuum chamber
is documented in the 2771-series of drawings.
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Appendix A: The Program ELEC

We provide here a listing of the program ELEC, which calculates the radii of the two
electrodes from a number of the design parameters.

o000

10

program elec

This program reads in the radius of curvature p0, n, a(-.1), b(-.01). It then
spits out the radii of the two electrodes of a toroidal bend.

common a,b

c1=0.0
c2=0.0
c3=0.0
c4=0.0

€5=0.0

c6=0.0
typex*
type*, ’This program finds toroidal electrode positions.’
type*
type*, ’Please enter c, tol, pO, a, and b (where a and b
+ are negative).’
typex*
read*, c,tol,p0,a,b

ci=1.0

c2=(-1.0-c)/2.0

call zeroi(tol,c1,c2,c3,c4,c5,c6,xi)

call zeroo(tol,cl,c2,c3,c4,c5,c6,x0)

ri=pO«xi+p0

ro=p0*xo+p0

write(6,5) ri,ro

format (1x,’SECOND ORDER: ri= ’,f8.5,°’ ro= ',£8.5)
type*

c3=(2.0+2.0%c+2.0%c**2) /6.0

call zeroi(tol,c1,c2,c3,c4,c5,c6,xi)

call zeroo(tol,c1,c2,c3,c4,c5,c6,x0)

ri=p0*xi+p0

ro=p0*xo+p0

write(6,10) ri,ro

format (ix,’THIRD ORDER: ri= ’,£8.5,° ro= ’,f8.5)
typex
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c4=(~6.0-5.0%c=7.0%c**2-6,0%c**3) /24.0

call zeroi(tol,ci,c2,c3,c4,c5,c6,xi) -
call zeroo(tol,c1,c2,c3,c4,c5,c6,x0)

ri=pO*xi+p0

ro=p0*xo+p0

write(6,15) ri,ro

format (ix,’FOURTH ORDER: ri= ’,f8.5,’ ro= ’,£8.5)
type*
c5=(24.0+19.0%c+20.0*%c**2+33.0%c**3+24.0%c**4)/120.0
call zeroi(tol,cl,c2,c3,c4,c5,c6,xi)

call zeroo(tol,c1,c2,c3,c4,c5,c6,x0)

ri=p0*xi+p0

ro=p0*xo+p0

write(6,20) ri,ro

format (1x,’FIFTH ORDER: ri= ’,f8.5,’ ro= ’,f8.5)
type*
c6=(-120.0-93.0%c-93.0%c**2-102.0%c**3-192.0*c**4-120,0%c**5) /720.0
call zeroi(tol,c1,c2,c3,c4,c5,c6,xi)

call zeroo(tol,c1,c2,c3,c4,c5,c6,x0)

ri=p0*xi+p0

ro=p0*xo+p0

write(6,25) ri,ro

format (ix,’SIXTH ORDER: ri= ’,f8.5,’ ro= ’,f8.5)
type*

end
subroutine zeroi (tol,c1,c2,c3,c4,c5,c6,x)
common a,b

f(x)=cl*x+c2kx**x2+c3*x**3+chkx**4+cS*x**x5+cO6*x**6+0.07613

y=a
z=b
x = y+(z-y)/2
if (£f(x).eq.0.0.0r.(z-y)/2.1t.tol) goto 20
if (£f(y)*f(x).gt.0.0) then
y=x
else
z=x
endif
goto 10 i
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return
end

subroutine zeroo (tol,ci,c2,c3,c4,c5,c6,x)
common a,b
f(x)=clex+c2*x**2+c3*x**3+Ccq*x**4+cE*x**5+cO*x*%6-0.07613

y=-b
z=-a
x = y+(z-y)/2
if (£f(x).eq.0.0.or.(z-y)/2.1t.tol) goto 20

if (£(y)*£(x).gt.0.0) then
y=x
else
z=x
endif
goto 10

return
end
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Appendix B: The Program PARAMN

We provide here a listing of the program PARAMN which takes a desired radius of curvature
po as input and the R matrix element of the fringing field and calculates the value of
n; that will match the R;; and R3; matrix elements for the entire bend. This condition
maintains the symmetry of the beam.

program paramn

c .
c This program reads in the radius of curvature p0 and the fringing field
c matrix element FR21 and determines the value of nl that equates R11i with
c R33.
c
real n
c
f(n)=cosd(107.7*sqrt (1-n+1.196%%-2)) +pO*fr*
+ 8ind (107.7*sqrt (1-n+1.196%*%-2)) /sqrt (1-n+1.196%*-2)
+ -cosd(107.7*sqrt(n))
c
5 typex*
type*, ’Enter a,b’
. readx*, a,b
type* .
type*, ’Enter p0 and FR21, both in Dekameters.’
read*, p0,fr
type*
c
type*, ’Input tolerance’
read*, tol
type*
c
10 n = a+(b-a)/2
if (f(n).eq.0.0.or.(b-a)/2.1t.tol) then
type*, ’'n =’,n
type*
type*, ’Want to use again (1,0)7?’
read*, nswer
if (nswer.eq.1) goto 5
stop
endif
c

if (f(a)*f(n).gt.0.0) then
a=n

15



else

endif
goto 10

end
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