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  Long Term GoalsLong Term Goals
• Create a virtual presence throughout our solar system and

probe deeper into the mysteries of the universe and life on
Earth and beyond

• Conduct human and robotic missions to planets and other
bodies in our solar system to enable human expansion

• Provide safe and affordable space access, orbital transfer
and interplanetary transportation capabilities to enable
research, human exploration and commercial
development of space

• Develop cutting edge aeronautics and space systems
technologies to support highway in the sky, smart aircraft
and revolutionary space vehicles
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n Nanostructures: 20 times
stronger than steel alloys at
1/6 the weight

n Active flow control

n Distributed propulsion

n Electric propulsion,
advanced fuel cells, high-
efficiency electric motors

n Integrated advanced control
systems and information
technology

n Central “nervous system”
and adaptive!vehicle control

n Develop light, strong, and
structurally efficient air
vehicles.

n Improved aerodynamic
efficiency.

n Design fuel-efficient, low-
emission propulsion
systems.

n Develop safe, fault-tolerant
vehicle systems.

Today’s Challenges: Technology Solutions:

Revolutionary VehiclesRevolutionary Vehicles–– TechnologiesTechnologies

Fuel Cell Propulsion

Active Flow Control

Adaptive Control

Nanotube
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Future Possibilities:Today’s Challenges:

n Long-duration and large,
long-haul transportation

n High-speed commercial
transportation

n Quiet and efficient runway-
independent aircraft

n Autonomous operations
capability

n Months aloft at
high-altitudes
and long
distances

n Quiet, efficient,
affordable
supersonic flight

n Extremely short
takeoff and
landing–doorstep-
to-doorstep

n Intelligent
flight controls,
micro-vehicles
to transports

RevolutionaryVehiclesRevolutionaryVehicles–– Capabilit iesCapabilit ies
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A p o l l o Space Shuttle

Space VehiclesSpace Vehicles–– TechnologiesTechnologies

G a l i l e o

Unmanned Missions

Spirit & Opportunity

Manned Missions
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Future Possibilities:Today’s Challenges:

n Low cost access to space

n Radiation resistance

n Resilience and long term
durability

n Advance power and
propulsion technologies

n Autonomous operations
capability

Revolutionary SystemsRevolutionary Systems–– Capabilit iesCapabilit ies
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Critical Technologies Required to
Achieve Goals

• Vehicle primary and secondary structures
• Radiation protection
• Propulsion and power systems
• Fuel storage
• Electronics and devices
• Sensors and science instruments
• Medical diagnostics and treatment
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Comparison of Material PropertiesComparison of Material Properties
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High Electrical Conductivity for EffectiveHigh Electrical Conductivity for Effective
Electrostatic Charge DissipationElectrostatic Charge Dissipation

r=10-6 (v-vc)1.5

REQUIREMENT
FOR ANTI-STATIC

Park et al., Chem. Phys. Lett., accepted
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Multifunctionality Multifunctionality as a Route to Structuralas a Route to Structural
Weight ReductionWeight Reduction
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Emerging Materials Technologies
for Propulsion and Power Applications

Emerging Materials TechnologiesEmerging Materials Technologies
for Propulsion and Power Applicationsfor Propulsion and Power Applications

Carbon Nanotube 
P o l y me r s

Boron Nitride
Nanotube A l l o y s

Silicon Carbide
Nanotube C e r a mi c s

NASA GRC
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Single-Walled Carbon Single-Walled Carbon Na n o t ub e sNa n o t ub e s
For Chemical SensorsFor Chemical Sensors

Single Wall Carbon Nanotube

• Every atom in a single-walled nanotube
(SWNT) is on the surface and exposed to
environment

• Charge transfer or small changes in the
charge-environment of a nanotube can cause
drastic changes to its electrical properties

NASA ARC
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• Four-level CNT dendritic neural tree with 14 symmetric Y-junctions
• Branching and switching of signals at each junction similar to what happens in 

biological neural network
• Neural tree can be trained to perform complex switching and computing functions
• Not restricted to only electronic signals; possible to use acoustic, chemical or thermal

signals

NASA ARC

Nanotube Nanotube Based ComputingBased Computing
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Technology FusionTechnology Fusion

  Carbon 
Nanotubes

I n f otechnology

B i otechnology N a n otechnology

Nanoelectronics
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Role of Role of C N T sC N T s

– Enable radical design changes
•Permit combination of properties

not previously possible
•Affords multifunctionality for

increased efficiency
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ChallengesChallenges

• Translating excellent combination of CNT
properties on the nanoscale to structural
properties on the macroscale
– Inconsistent quality of carbon nanotube

supply
– Dispersion of carbon nanotubes
– Characterization of carbon nanotube

nanocomposites
– Scaling down processing equipment to

work around low CNT supply
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Effect of CNTEffect of CNT Dispersability Dispersability
Good dispersion (optically dispersed)Poor pre-dispersion

0.05%SWNT-CP2
Kinetically stable

After 2 years

0.05%SWNT-(b-CN)APB/ODPA
Thermodynamically stable

After 2 years

Direct mixing In situ polymerization under sonication
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Ounaies et al., Composites Sci. and Technol. ASAP (2003)
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Fabrication of CNT Laminates andFabrication of CNT Laminates and
C o mp o s ite sC o mp o s ite s

Laminate

Composite
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Both NiCo and NiY Work in FELBoth NiCo and NiY Work in FEL
S y s t e mS y s t e m

• Unusual for both types of catalyst to work in same system

• Both show relatively small, randomly oriented bundles
– Bundle diameter for NiY are 4 - 10 nm
– Bundle diameter for NiCo are 4 - 18 nm

NiCo (0.5:0.5 at. %) catalystNiY (1:4 at. %) catalyst
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TEM comparison, Nd:YAG (JSC) vs FELTEM comparison, Nd:YAG (JSC) vs FEL
Synthesized Raw MaterialSynthesized Raw Material

Nd:YAG laser FEL
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HRTEM Shows Bundles,HRTEM Shows Bundles,
Individual Tubes, & PeapodsIndividual Tubes, & Peapods

• No double-wall or multi-wall tubes were observed
• Individual tubes and small bundles are seen
• Fullerenic carbon shells are observed outside and inside the

nanotubes (peapods)
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Raman Spectroscopy of FEL tubesRaman Spectroscopy of FEL tubes
vs other Synthesis Techniquesvs other Synthesis Techniques

Spectra scaled for display purposed
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F E LF E L CNTs  CNTs Enable NASA MissionsEnable NASA Missions

• World record production rate for laser synthesis
– from mg/hr rates, to g/hr rates

• Analysis shows superior material - Control is key
– higher purity
– fewer defects
– longer bundles of smaller diameter

• First material delivered to users
– favorable properties for matrix reinforcement
– good dispersion in films


